Skip to main content
Back to top
Ctrl
+
K
What Should You Expect From This Book?
1. How to Read This Book
2. Python Built-in Methods
2.1. String
2.2. Number
2.3. List
2.3.1. Get Elements
2.3.2. Unpack Iterables
2.3.3. Join Iterables
2.3.4. Apply Functions to Elements in a List
2.4. Set
2.5. Dictionary
2.6. Function
2.7. Classes
2.8. Datetime
2.9. Code Speed
2.10. Good Python Practices
2.11. New Features in Python
3. Python Utility Libraries
3.1. Collections
3.2. Itertools
3.3. Functools
3.4. Pydash
3.5. SymPy
3.6. Operator
3.7. Data Classes
3.8. Typing
3.9. pathlib
3.10. Pydantic
4. Pandas
4.1. Change Values
4.2. Get Certain Values From a DataFrame
4.3. Work with Datetime
4.4. Transform a DataFrame
4.5. Create a DataFrame
4.6. Combine Multiple DataFrames
4.7. Filter Rows or Columns
4.8. Manipulate a DataFrame Using Data Types
4.9. Sort Rows or Columns of a DataFrame
4.10. Work with String
4.11. Style a DataFrame
4.12. Test
5. NumPy
5.1. NumPy
6. Data Science Tools
6.1. Feature Extraction
6.2. Feature Engineer
6.3. Get Data
6.4. Manage Data
6.5. Machine Learning
6.6. Natural Language Processing
6.7. Time Series
6.8. Sharing and Downloading
6.9. Tools to Speed Up Code
6.10. Visualization
6.11. Tools for Best Python Practices
6.12. Better Pandas
6.13. Testing
6.14. SQL Libraries
6.15. 3 Powerful Ways to Create PySpark DataFrames
6.16. Large Language Model (LLM)
7. Cool Tools
7.1. Alternative Approach
7.2. Workflow Automation
7.3. Code Review
7.4. Logging and Debugging
7.5. Better Outputs
7.6. Git and GitHub
7.7. Environment Management
8. Jupyter Notebook
8.1. Jupyter Notebook
Repository
Open issue
Search
Error
Please activate JavaScript to enable the search functionality.
Ctrl
+
K